

Wasserstoff-Korrosion von unterschiedlichen Feuerbetonen und ihrer Bindematrix

Th. Tonnesen, T. Leber, F. Matt, M. Scheller, D. Kenn, J. Gonzalez Lehrstuhl für Keramik, Institut für Gesteinshüttenkunde, RWTH Aachen

7. DGFS Fachtagung, Innovationen und Neuerungen im Feuerfest- und Schornsteinbau

Einleitung und Motivation

Relevanz der Studie

- Minimierung der metallurgischen CO₂-Emissionen, vorzugsweiße in der Stahlindustrie (6 % der deutschen Gesamtemissionen)
- Schlüsseltechnologien basierend auf Wasserstoff (Reduktionsmittel, Wärmeerzeugung)

Direktreduktion, Prozess

Quelle: CESAREF, Europ. Industrial Doctoral Network, www.cesaref.eu

Korrosion durch Gase und Atmosphären

Motivation

Theorie

Versuche

Reaktionen mit Heißgasen, Dämpfen und Staub haben viele Ursachen:

- Oxidierende oder reduzierende Umgebung
- Alkalihaltige Umgebung
- Halogene oder Chalcogene
- Vakuum
- H₂O Dampf

Fazit

 Verschiedene metall. Verdampfungsprodukte: H₂O, Zn, Pb, Si, Mg, etc.

Dampfdruck von Oxiden Nach *Muan and Osborne: Phase Euilibria of Oxides, Am. Iron and Steel Inst.*

Ergebnisse

FactSgae

Korrosion durch Gase und Atmosphären

Direktreduktion, Prozess

- Korrosion
 - Durch Gas

Wasserstoff: $SiO_2(s) + H_2(g) \rightarrow SiO(g) + H_2O(g)$

Kohlenmonoxid: $2CO(g) \rightarrow CO_2(g) + C(s)$

- Berücksichtigung von SiO und Taupunkt
- Mechanische Belastung, Abrieb, Erosion
- Thermo-mechanische Belastung, vorrangig durch Thermoschock

Source: P. v. Beurden: The new face of the steel industry & its effect on refractory management, FIRE School Aachen 2022

Theorie Versuche

Ergebnisse FactSgae Fazit

Direktreduktion, Prozess

- Weiterer Anstieg des H₂ Anteils?
 - Anstieg der Korrosion durch Wasserstoff:

 $SiO_2(s) + H_2(g) \rightarrow SiO(g) + H_2O(g)$

- Thermo-mechanische Eigenschaften der FF-Werkstoffe sind betroffen
- Anstieg der Wärmeleitfähigkeit
 - Energie Bilanz Wärmeverluste steigen an
 - Thermische Spannungen Dehnungsverhalten ändert sich
 - Prozess Kontrolle Prozess Temperatur kann sich ändern
 - Säure Korrosion Weitere "Cold Spots" erwartbar

Source: P. v. Beurden: The new face of the steel industry & its effect on refractory management, FIRE School Aachen 2022

Korrosion durch Gase und Atmosphären

Motivation Theorie Versuche Ergebnisse FactSgae

Binder

Phosphatbinder

- Aluminiumphosphate & Phosphorsäure
 - Tonerdegehalt > 60 Gew.%
- + Bessere Hochtemperaturbeständigkeit
 - Formung von Bindungen welche bei hohen Temperaturen ihre Struktur behalten
- System auf Säurebasis: toxische Eigenschaften

Aluminiumoxid, Alumina

- Bildung von $Al(H_2PO_4)_3$
- Ab 1600 °C:
 - *P*₂*O*₅ beginnt zu verdampfen
 - *Al*₂*O*₃ bleibt zurück

Silika

- 1100-1300°C
 - $SiO_2 \cdot P_2O_5$
 - $2 \cdot SiO_2 \cdot P_2O_5$
 - Schmelzflüssige Phasen:
 - Geringere Festigkeit

Magnesia, Magnesiumhydroxid

- 1160-1380°C
 - $MgO \cdot P_2O_5$
 - Niedrig schmelzende Verbindung:
 - Geringere Festigkeit

Material & Parameter

Material					
 Schamotte mit Phosphatbinder 	2109	2059			
 Sintermagnesia mit Natriumpolyphosphatbinder 		Some and the state			
 Hochtonerde Material (High Alumina) mit Phosphatbinder 	2108	2058			

RFA Analyse					
Gew. %	2058-0 Schamotte/Andalusit	2059-0 Korund/Bauxit	2108-0 Sintermagnesia	2109-0 Alumina	
SiO ₂	33,31	24,20	3,45	0,19	
Al ₂ O ₃	63,12	72,74	0,33	94,25	
Fe ₂ O ₃	0,75	0,63	0,87	0,04	
MgO	0,0	0,0	89,10	0,23	
Na ₂ O	0,14	0,17	1,69	0,14	
P ₂ O ₅	1,13	1,05	3,11	5,13	

Motivation

Versuchsaufbau

Ergebnisse Versuchsreihe Schamotte (2058)

- Schamotte Probe
- Gewichtsabnahme von 0,58%
- Offene Porosität

Auswertung

- Ausgangszustand 16,5 Vol.-%
- Hauptversuch 18,0 Vol.-%

EDX-Mapping

Ergebnisse Versuchsreihe Sintermagnesia (2108)

- Sintermagnesia Probe
- Gewichtsabnahme von 4,6%
- Offene Porosität

Auswertung

- Ausgangszustand 26,8 Vol.-%
- Hauptversuch 30,0 Vol.-%

Versuche Ergebnisse FactSage

Versuche Ergebnisse FactSage

Ergebnisse Versuchsreihe High Alumina (2109)

- High Alumina Probe
- Gewichtsabnahme von 4,9 %
- Offene Porosität

Auswertung

- Ausgangszustand 26,4 Vol.-%
- Hauptversuch 34,9 Vol.-%

EDX-Mapping

e Ergebnisse FactSage

Fazit G

Grundlagen FactSage

Thermodynamik

- Definiert den angestrebten Gleichgewichtszustand
- Treibende Kraft: Minimierung der freien Gibbs Enthalpie

 $\Delta G = \Delta H - T \cdot \Delta S$

FactSage

- Thermodynamisches Simulationstool
- Modularer Aufbau

Motivation

 Equilib-Modul: Berechnung des chemischen Gleichgewichts anhand der Gibb-Minimierungs-Methode

Versuche

Theorie

Durchführung der Rechnungen

Annahmen

- Detektierte Stoffspezies nach den RBA-Ergebnissen
- Restliche Elemente als Oxide mit der gängigsten Oxidationsstufe

Rechnungen

- Version: FactSage 8.0
- Systemdruck auf 1 bar festgesetzt
- Temperaturbereich: 1000 1500 °C
- Modul: Equilib

Motivation

Datenbanken: FactPS, FToxid

Theorie

Ergebnisse der Rechnung

etc.

 (AI_2O_3, SiO_2)

Motivation

Magnesia (2108) (72 h)

- Feststoffphasen: Olivine, Eisen-Phosphor etc.
- Geringfügige flüssige Schlackenphase $(SiO_2, CaO, MgO, P_2O_5)$

Dominierende phosphorhaltige

Gasspezies: P_2 , PO, $(P_2O_3)_2$

Dominierende phosphorhaltige Gasspezies: P₂, PO

Theorie

Deutung der Ergebnisse

Reaktionsmodell

Kondensation von Phosphor

$$2P_{2(g)} \rightarrow P_{4(s)}$$

Phosphorabbrand

$$P_{4(s)} + 5O_{2(g)} \rightarrow P_4O_{10(s)}$$

21

Motivation Theorie

🕨 Versuche 🕥 Ergebi

Ergebnisse FactSage Fact

Schlussfolgerungen und Ausblick

Studie

- Hauptaugenmerk Verflüchtigung von Bestandteilen und deren Auswirkungen auf die Mikrostruktur/Porosität
- Verdampfungsprozesse können zu ungewünschten Folgereaktionen führen
- → Minimierung der Lebensdauer von Zustellungen

Ausblick

- Auswirkungen auf die mechanischen Eigenschaften
- Erhöhte Wasserstoffpartialdrücke und Temperaturen
- Identifikation der ofenbedingten Auswirkungen auf die Ergebnisse
- Betrachtung von anderen Bindern

Theorie

Motivation

Versuche Erge

Ergebnisse FactSage

Schlussfolgerungen und Ausblick auf andere Projekte mit H₂

CESAREF Concerted European action on Sustainable Applications of REFractories

Use of Metallurgical Residues as Potential Raw Materials for High Performance Refractory Castables

Corrosion and Changes of Microstructure and Thermal Properties of Refractory Castables in H₂ Combustion Atmospheres

HyInHeat: Hydrogen technologies for decarbonization of industrial heating processes - Steel Case - Aluminium Case

TWINGHY: Digital Twins for Hydrogen Fired Reheat Furnaces

Motivation Theorie

Versuche Ergebnisse

🕨 FactSage 🔰 🛛 Fazit

Vielen Dank für Ihre Aufmerksamkeit

tonnesen@ghi.rwth-aachen.de

