"Hydrogen-Hype" in Refractories or just only an Old Hat for Refractory Engineering and Construction?

Dr.-Ing. Johannes Brück- Jünger + Gräter GmbH Dipl.-Ing. Mirjam Ballon- Ballon.Enterprises

Some Figures

Greenhouse gas-emissions in Germany 2020 by sectors (mio. tons CO2-equivalent)

Quellen: Umweltbundesamt (2022), Wirtschaftsvereinigung Stahl (2022)

BALL^ON.ENTERPRISES

Actual-emissions vs. admissible emissios in the industrial sector acc. the federal-climate protection law (in mio. tons CO2)

Quelle: Deutscher Bundestag (2021)

	Terminology	Technology	Feedstock/ Electricity source	GHG footprint*
PRODUCTION VIA ELECTRICITY	Green Hydrogen	Electrolysis	Wind Solar Hydro Geothermal Tidal	Minimal
	Purple/Pink Hydrogen		Nuclear	
	Yellow Hydrogen		Mixed-origin grid energy	Medium
PRODUCTION VIA FOSSIL FUELS	Blue Hydrogen	Natural gas reforming + CCUS Gasification + CCUS	Natural gas coal	Low
	Turquoise Hydrogen	Pyrolysis RdMal gPRODU	Natural gas	Solid carbon (by-product)
	EFRACTO			DED
	Brown Hydrogen	Gasification	Brown coal (lignite)	High
	Black Hydrogen		Black coal	

*GHG footprint given as a general guide but it is accepted that each category can be higher in some cases.

www.researchgate.net

4

*) in case required, the carbon content of the DRI for Case 1 could also be increased to > 3.5%

**) used for heating of the reducing gas

Source: Midrex H2- the road to CO2 Direct reduction, Paper AISTech 2021

Main processes for hydrogen production:

- Steam reforming of methane or other hydrocarbons
- Gasification of organic feedstock to syngas (H₂/CO)
- Recovery from gaseous waste streams
- Electrolysis of NaCl.

Autothermal Reforming H_{2} ~40 bis 1200 °C Ammoniakanlage bis 1450 °C Methanolanlage bar No Water shell! 50-60% H2 0 \bigcirc Kühlwasser zum Synthesegaskühler Lower operating costs and better control of the 800 °C bis 1000 °C Kühlwasserpressure vessel mantel **Corundum Brick** $AI_2O_3 > 99\%$ SiO₂ < 0,15% Fe₂O₃ < 0,15% - + -

BALL^ON.ENTERPRISES

REFRACTORIE

Mr. CO & Mrs. Hydrogen the unsaint couple for refractory

- Temperature and good thermal shock behaviour (inlet area)
- Abrasion Resistance
- Resistance to CO attack
- $CO_2 + C \rightleftharpoons 2CO$
- Resistance to H2 attack
- $2H_2 + SiO_2 \rightleftharpoons 2H_2O + SiO$
- Resistance to steam

BALL^ON ENTERPRISES

Boudouard Reaction

Reduction of Silica

no basic material

The future use of hydrogen in the steel industry

Quelle: rwe_enformer_stahl_aus_wasserstoff_grafik-hybrit.jpg

BALL^ON.ENTERPRISES

TODAY $Fe_2O_3 + 3CO \Rightarrow 2Fe + 3CO_2$

THE FUTURE: ½ Fe2O3 + ½ H2 FeO + ½ H2O

 $Fe_2O_3 + 3H2 \Rightarrow 2Fe + 3H_2O$

Midrex now

MIDREX[®] Direct Reduced Flowsheet

Gas Plenum Inlet Area: Corundum Brick & Castable Al_2O_3 : 79% SiO_2: 20% CCS: 70 N/mm² Rev. Linear change (20-1200°C): 6,67 10⁻⁶K⁻¹

Temperature: 850 – 1200 °C

Conclusion

- It is obvious that for the transition time until sufficient renewable energy is available and hydrogen production plants are in place to cover the requirements, the hybrid form of processes working with natural gas and later with H2 is the realistic scenario.
- The refractory engineering with syngas concerning Carbon oxides **and** hydrogen is by far more challenging and experienced
- Moreover, a DR plant using only hydrogen would be much simpler than MIDREX and HYL-ERNERGIRON, because the gas loop is shorter and methane reforming is not required.
- It could be expected that due to the fast reduction kinetics with H2, the reactor geometry could change but this would have no big influence on the refractory lining

Thank you for listening!

J+G Refractories