
Sustained Engineering savings by Utilization of Enhanced Rear Insulation

How could we be more sustainable?

World leaders in advanced ceramic materials

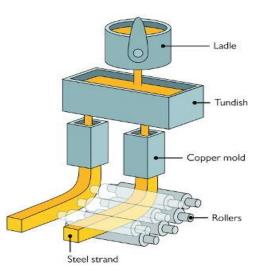
- Morgan Thermal Ceramics are world leaders in high-temperature thermal ceramics.
- 4 CoE's located globally to develop advanced materials to help meet our sustainability pledge.
- Offer advanced thermal insulation solutions for molten metal transfer applications

Morgan's Sustainability Pledge

Advanced Molten Metal Transfer Insulation

One area where a reduction in emissions is possible

Torpedo Car



Transfer of Metal from Blast Furnace to Induction furnaces OR treatment ladles

Steel or Transfer Ladles

Treatment ladles Transfer ladles Tundish

Reservoir that holds metal from ladles and transfers to continuous casting molds

Global changes need advanced Insulation

Our Centre of Excellence in EMEA is committed to developing new solutions for global problems

'Advanced Ladle Insulation System' Superwool® 1650SI Board WDS® LambdaFlex® Super Image: Superwool® 1650SI Board WDS® LambdaFlex® Superwool® LambdaFlex® Super

Thermal Ceramics have been successful in launching the 1650SI board in 2020. Since then, we have installed the board (with/without WDS LambdaFlex) in the following applications:

Am	nericas	EMEA	Asia	
180M 65Mt 100M	It ladle It ladle EAF It Ladle It Ladle	300MT Ladle 180Mt Ladle +WDS	380MT Torpedo Car - China 120MT Ladle – Taiwan (+WDS) 60Mt VOD Hood Cover - Taiwan 150Mt Steel Ladle - China 120Mt & 150Mt Ladles - China (+WDS)	60Mt EAF - China 320Mt Ladle – India (+WDS) 30Mt Ladle – India (+WDS) 120Mt Ladle – Taiwan (+WDS) 130Mt Ladle – China

Superwool 1650SI Board

For molten-metal transfer applications

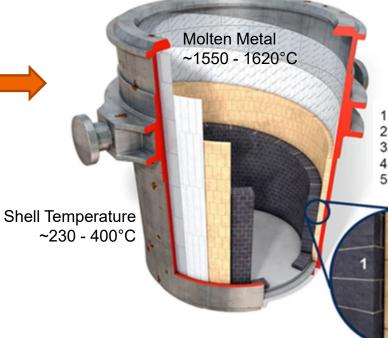
- Structural boards currently used in ladle linings are over-engineered to have very high mechanical strength
- This is aimed to withstand the hoop stresses from the steel pushing on the ladle walls
- But with high density comes poor thermal conductivity

- -----Superwool 1650SI Board
- ---High Density Calcium Magnesium Silicate Board
- ---High Density Magnesium Silicate Board
- ----High Density Vermiculite Board

	Low Density	High Density	Superwool 1650SI	Thermal Conductivity of high density ladle boards Vs
	Insulating Boards	Structural Boards	Board	Superwool 1650SI
Density	Low	High	Medium	0.35
(kg/m3)	180-310	~1250	820	
Strength	Poor	Very High	Good	€ 0.25
MPa	~0.5	~22	3-4	
Thermal Conductivity W/m.K @ 1000C	Excellent 0.2	Poor ~0.3	Excellent 0.2	0.20 0.15 0.10 Application temperature
Comments	Low strength = high compression = poor thermal conductivity	High density = high strength = poor thermal conductivity	Good strength = good compression resistance = excellent long term thermal conductivity	0.10 0.05 0.00 200 400 600 800 1000 1200 Temperature (°C)

Innovating Ladle Lining

Current Ladle Lining Design


Typical Refractory System in Ladles				
Floor	Cast or Brick ladle bottom			
FIOOI	Cast subfloor			
	Working Lining	Basic Brick or Castable (Mag Carbon)		
	Backfill "Grain" Material (Optional) (High Alumina Castable)			
Barrel	Safety Lining	Castable (High Alumina Bricks)		
	Back-up Lining	Insulating Board, Paper (Various options)		
	Steel Shell			

Note:

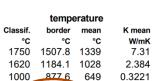
Morgan Advanced Materials

Refractory lining design, thickness and specification of components vary from ladle to ladle depending on various operations and mechanical parameters.

Advanced Ladle Lining Design 'The Complete Lining Solution'

Magnesia Carbon Brick
 Safety Lining Dense Brick
 Superwool 1650SI Board
 WDS LambdaFlex Microporous
 Ladle shell

Impact of using an Advanced Insulation


*Changing the board only

	<u>inside</u>	<u>outside</u>	<u>unit</u>
Ambient temperature	1650	26	°C
Surface temperature	1507.8	392.3	°C
Heat transition coefficient	100	32.33 (1)	W/m2K
Diameter	2498	3000	mm
(1) Calculation method ASTM C680, issue 1986 Er	nissivity=0.90 - win	id =0 m/s	

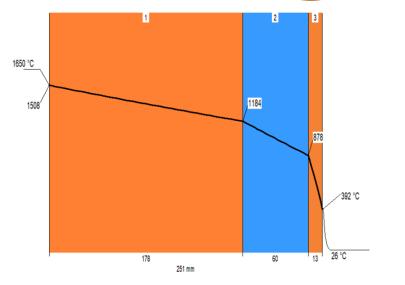
lining characteristics
lining characteristics 111595 W/m (11841 W/m2) Heat loss
8831 MJ/m heat storage
6129 kg/m weight
251 mm total thickness

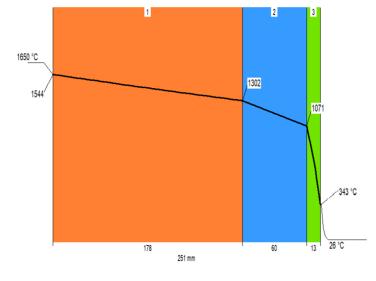
w	all lavers from inside to outside	Thickn	Density
(-)	,,,,,,,,,,,		

	inside	outside	<u>unit</u>
Ambient temperature	1650	26	°C
Surface temperature	1543.9	343.0	°C
Heat transition coefficient	100	27.87 (1)	W/m2K
Diameter	2498	3000	mm
(1) Colculation method ACTM CC00, issue 1096	Emissivity=0.00 win		

(1) Calculation method ASTM C680, issue 1986 Emissivity=0.90 - wind =0 m/s

wall layers from inside to out	side
--------------------------------	------


	All in the second se
1	MgO-C brick
2	High Alumina brick
-	


3 SW 1650 SI Board

lining characteristics 83260 W/m (8834 W/m2) Heat loss 9652 MJ/m heat storage 6082 kg/m weight 251 mm total thickness

			tempe	erature	
Thickn.	Density	Classif.	border	mean	K mean
mm	kg/m3	°C	°C	°C	W/mK
178	2970	1750	1543.9	1418	7.31
60	2800	1620	1302.4	1185	2.353
13	820	1350	1070.9	744	0.1616
		(343)	

1

2 3

Impact of using an Advanced Insulation

*Changing the board & adding Microporous Insulation

	<u>inside</u>	<u>outside</u>	<u>unit</u>	1
Ambient temperature	1650	26	°C	
Surface temperature	1507.8	392.3	°C	
Heat transition coefficient	100	32.33 (1)	W/m2K	
Diameter	2498	3000	mm	
(1) Calculation method ASTM C680, issue 1986 Emi	ssivity=0.90 - wir	nd =0 m/s		

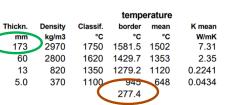
lining characteristics
lining characteristics 111595 W/m (11841 W/m2) Heat loss
8831 MJ/m heat storage
6129 kg/m weight
251 mm total thickness

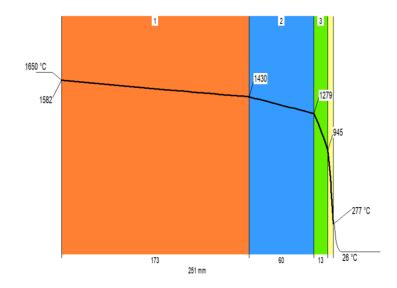
					tempe	erature	
Wa	all layers from inside to outside	Thickn.	Density	Classif.	border	mean	K mean
	Material	mm	kg/m3	°C	°C	°C	W/mK
1	MgO-C brick	178	2970	1750	1507.8	1339	7.31
2	High Alumina brick	60	2800	1620	1184.1	1028	2.384
3	Dense Board	13	1202	1000	877 6	649	0.3221
	Bonoo Board				392.3		

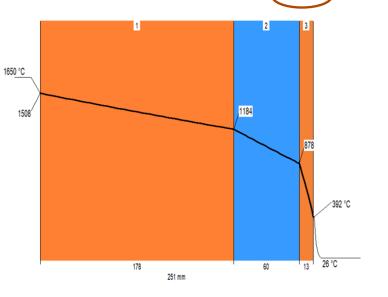
wall layers from inside to outside

High Alumina brick

MaO-C brick

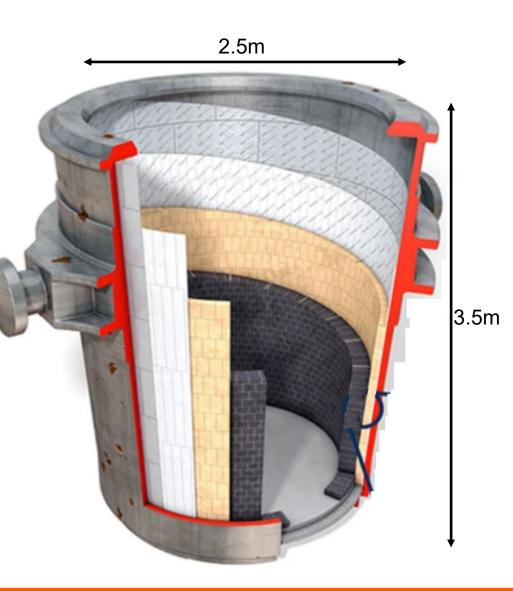

SW 1650 SI Board


4 WDS Lambdaflex Super


2

3

<u>unit</u> |lining characteristics 53755 W/m (5704 W/m2) Heat loss 10391 MJ/m heat storage 5961 kg/m weight 251 mm total thickness



Morgan Advanced Materials

Worked example

- Steel transfer ladle
- Internal Surface Area = 27.5m2
- Metal temperature = 1650°C
- Ladle volume = 17m3
- Mass of Steel = 130MT
- 8 hours 'hot' per day
- 24 days use per month
- Natural Gas Price = 7.8c / kWh

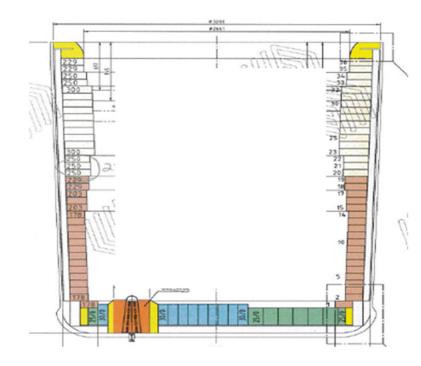
Impact on Energy / CO₂ / Cost

Ladle Insulation	High-Density Structural Board	Superwool 1650SI	Superwool 1650SI + Lambdaflex
Working & Safety Lining	178mm Mg CF8L1 60mm high A	0-EU	Working lining -5mm
Insulation Thickness	13mm	13mm	13mm & 5mm
Cold Face Temperature (°C)	392	343	277
Heat Loss (kW/m2)	11.8	8.8	5.7
Total Heat (kW)	326	243	157
Heat loss Per Year (kW·h)	750182	559469	361152
Cost of Energy Lost Per Year Through Lining (0.078 €/kW.h)	€ 58,514	€ 43,639	€ 28,170
Energy Savings	-	€ 14,876	€ 30,344
Additional cost of Insulation (example figures)	-	1000	3000
Payback-Period (Days)	-	21	31

Calculation based on Theoritical Heat Loss							
Fill in the values in cells with orange color Details	Unit	Calandations					
Detalls	Unit	Calculations					
Ladle Capacity	MT	130					
Ladle Side Surface Area	Square Meter	27.5					
Heat Loss as per Existing lining design	Watt per Square Meter	11841					
Heat Loss as per proposed lining design (SW 1650 SI + WDS Lamdaflex in back-up)	Watt per Square Meter	5704					
Difference	Watt per Square Meter	6137					
Total Heat Difference	Kilo Watt	169					
Total hours of operations a day (when the ladle is filled)	Hrs	8					
Total Heat Saving	KW Hr	1350					
Average no. of day of working in a month	Days	24					
Total Heat Saving per year	KW Hr	388840					
Energy cost per unit	Euro per KWH	0.078					
Total Saving in Euro for a year		30407					
Total investment (additional cost paid) for the new back-up lining	Euro	3000					
Payhack-period	No. of Years	0.10					
Payback-period	No. of days	31					

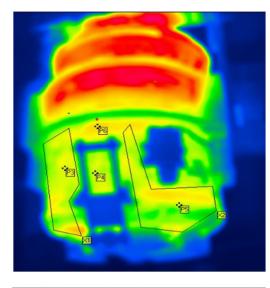
Note: The savings calculator and ROI calculator do not take in to account CO₂ cost

Currently at €84/MT


Appendix

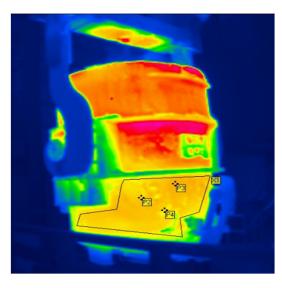
Case Study 1 110MT Ladle in Taiwan

- Customer was using Skamol HS12 Structural Board along with our WDS LambdaFlex Super as back-up insulation system
- The ladle shell was noted at 280°C with the new lining and was increasing with use. The ladle relining alarm was set to 450°C.
- The customer chose to replace the Skamol Boards with our Superwool 1650SI Boards in this trial, keeping every other lining configuration same.
- 2 ladles Side by side comparison between 1650SI and Skamol.



- Trial started with two ladles in August 2020; two different plants
- Life expectancy is 1000 cycles
- Metal holding time are approximately:
 - Plant 1 70 to 90 minutes
 - Plant 2 85 to 120 minutes

Case Study 1 110MT Ladle in Taiwan


Superwool 1650SI Board

識別碼	平均值	最小值	最大值
X1	258.38	217.88	305.64
X2	253.48	182.78	285.91
P3	261.99		
P4	256.95		
P5	254.85		
P6	288.57		

Average 262°C

Skamol HS12 Board

識別碼	平均值	最小值	最大值
X1	293.18	210.29	312.66
P2	295.35		
P3	308.60		
P4	292.11		

.

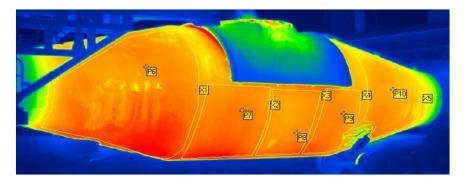
Average 297°C

- Both ladles completed their life expectancy of over 1000 cycles. The customer relined both ladles with 1650SI board because of it superior performance.
- The shell temperature at the liquid steel section was consistent with the heat calculations submitted by Morgan Thermal Ceramics.
- The use of Superwool 1650SI Board resulted in two advantages to the steel makers in terms of operation:
 - The starting temperature of pouring and the subsequent tapping temperatures of the Continuous Casting sequence can be easily managed upon the in-situ operational requirements.
 - The longer sequence of Continuous Casting is achievable and manageable.
- The customer was completely satisfied with the result and has awarded the annual orders amounting to 22 ladles.
- Superwool 1650SI Boards show superior insulation performance with the lower shell temperature at 30 to 35°C.
- The payback period of using 1650SI versus the Skamol board was <2 months.

- The customers engineering department started a project aimed at energy saving by relining the torpedo car.
- Taking reference from an overseas case study (case of iron leakage after the renovation of the torpedo in the UK)

Addressing Customer Requirements

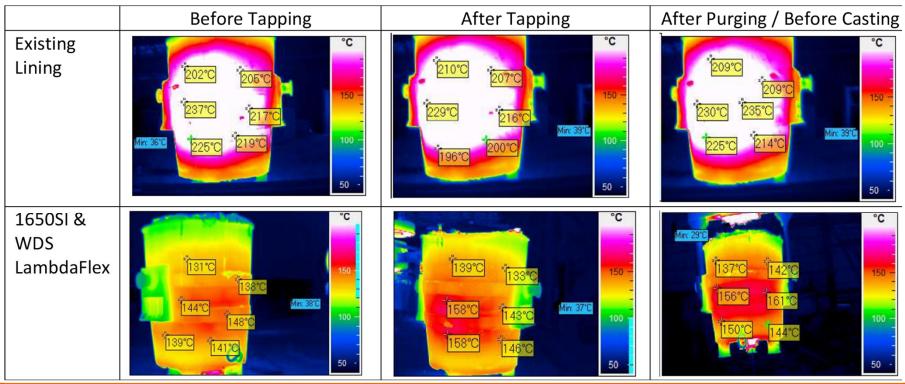
- 1. Good insulation performance to enhance the insulation effect and reduce the temperature by 15-20°C Key address: *thin lining with improved insulating performance*.
- The structural stability of the masonry and the safety of the backing are considered. Increased melt loss in the lining, rapid age reduction and abnormal damage to the backing resulting in iron leakage must be avoided.
 Key Address: <u>high strength, high classification temperature, good thermal shock resistance.</u>
- 3. Convenience of construction and operation of the equipment, the economic considerations of maintenance and repair.



- The images show the 13mm 1650SI board being installed on the torpedo steel shell.
- 2 x 18mm layers of Magnesium Silicate dense board were installed after this as standard.

单位(℃)	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	平均
单层高强度纤维板	104.4	1066	108.1	107.0	111.2	97.3	108.1	98.8	101.1	102.0	104.9	104.4
全部	114.3	114.6	115.3	112.8	112.7	116.1	118.0	127.7	107.2	107.6	113.7	114.5

- During the trial, Morgan Thermal Ceramics carried out thermographic temperature measurements as well as customer assistance in providing feedback on temperature data from steel mill owners.
- The boards were installed for 11 months before the torpedo was removed and the working & safety lining was replaced as standard
- Over the 11 months use, the average temperature drop was 10.1C compared to a similar torpedo without the 1650SI board.
- According to the customers calculations, a 1°C per tonne improvement has resulted in a 0.29 RMB saving.
- Therefore: Average temperature drop = 10.1C Tonnes = 380Mt Saving per use = 3838 RMB Saving per use = £465



- After the good results from the trial, the customer has ordered sufficient boards to reline 5 x torpedo's and completely remove the magnesium silicate boards from the lining.
- The next 5 torpedo's will be lined with 2 x 18mm layers of 1650SI board safety lining working lining.

Case Study 3 - 20MT Ladle in India

- The customer was using a fibre-based structural board in their 20MT transfer ladles
- Morgan Thermal India team approached the customer and provided thermal calculations showing the energy savings of using 1650SI board and Microporous
- The below thermographic images show the ladle with the <u>existing</u> lining and when relined with 1650SI board and WDS LambdaFlex

Case Study 3 20MT Ladle in India

- As committed by Morgan Thermal India, the cold face temp is around 130-170°C.
- The new lining reduced the cold face temperature by 60-80°C.
- The tapping temperature is around 1590-1615°C; against the earlier practice of 1630-1640°C = 15-20°C reduction.
- This results in energy savings of 100 units per heat = INR 700 per heat (\$9.20).
- Considering 300 days and ~9 heats per day, this results in ~1.9 MN INR per year (\$25,000 per year) and the payback is less than 3 months.
- The ladle cold face temperature is massively reduced which allowed for longer metal holding time and allowed for flexibility in their operations

Case Study 4 300MT ladle in South Africa

- The customer was using 10mm Silplate 1212S back-up board
- A newly lined ladle of 178mm hot face lining, with reduced safety lining thickness from 50mm to increase capacity.
- The ladle sat in the purging section for double the usual time due to some issues in the plant.
- This meant that the ladle was closer to equilibrium when the thermal scan was taken (around Nov 2020).
- <u>Hot spots of over 400°C</u> were seen near the top with an average temperature of 366°C seen around the middle.
- This shows that the Silplate is not effective in protecting the steel shell and there are risks of burn through.
- Thermal calculations performed by Morgan Thermal Ceramics provided similar cold face temperatures.

Case Study 4 300MT ladle in South Africa

Current Lining

Newly Lined Ladle:

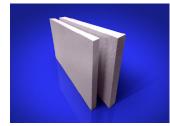
					tempe	erature	
Wa	all layers from inside to outside	Thickn.	Density	Classif.	border	mean	
	Material	mm	kg/m3	°C	°C	°C	
1	Magnesia-Carbon Firebrick 10C	178	3050	1750	1648.6	1400	
2	60 Alumina Firebrick 1	25	2550	1630	1177	1082	
3	Silplate 1212S	10	850	1200	987.8	709	
			Ladle T	emperatur	e: 381.8		

Worn Ladle Requiring Reline:

					tempe	erature
Wa	all layers from inside to outside	Thickn.	Density	Classif.	border	mean
	Material	mm	kg/m3	°C	°C	°C
1	Magnesia-Carbon Firebrick 10C	30	3050	1750	1648.1	1588
2	60 Alumina Firebrick 1	25	2550	1630	1529.1	1382
3	Silplate 1212S	10	850	1200	1237.3	905
			Ladle Te	emperature	: 464.6	

Proposed Lining

Newly Lined Ladle:


					tempe	erature
W	all layers from inside to outside	Thickn.	Density	Classif.	border	mean
	Material	mm	kg/m3	°C	°C	°C
1	Magnesia-Carbon Firebrick 10C	178	3050	1750	1648.9	1526
2	60 Alumina Firebrick	25	2550	1630	1413.6	1347
3	Superwool 1650SI	10	850	1650	1279.9	1120
4	WDS Lambdaflex Super	3.0	360	1100	932.4	673
		l	adle Tem	nperature	342.9	

Worn Ladle Requiring Reline:

					tempe	rature	
Wa	all layers from inside to outside	Thickn.	Density	Classif.	border	mean	
	Material	mm	kg/m3	°C	°C	°C	
1	Magnesia-Carbon Firebrick 10C	30	3050	1750	1648.7	1624	
2	60 Alumina Firebrick	25	2550	1630	1600.5	1516	
3	Superwool 1650SI	10	850	1650	1432.2	1261	
4	WDS Lambdaflex Super	3.0	360	1100	1063	770	
			Ladle Te	mperature:	385.2		

- Using 1650SI and 3mm microporous, the cold face of the new lining was reduced by ~40°C .
- After an 80% erosion of the working lining, the cold face using the Silpate 1212S was 465°C .
- After an 80% erosion of the working lining, the cold face using the 1650SI & LambdaFlex was 385°C ٠

temperature

Case Study 4 300MT ladle in South Africa

- Morgan Thermal Ceramics performed further calculations and showed the benefits of using 1650SI with and without WDS LambdaFlex microporous
- The customer was conscious about price, but after seeing the improvements gained from microporous in the thermal calculations, they decided to include microporous in the trial

Measuremen	Its	02/02/2022 12:34:46	Measurements		02/02/2022 12:36:31			
Sp1	232.5 °C		Sp1	253.1 °C			Number of	Average shell
Sp2	239.1 °C		Sp2	251.1 °C				/ Wordgo onon
Sp3	250.2 °C		Sp3	254.8 °C			heats	temperature
Sp4	250.2 °C		Parameters				neate	
Parameters			Emissivity	0,95	501	Ladle with	40	
Emissivity	0,95	Sp1	Refl. temp.	22 °C	A A SP2	Silplate 1212S	46	286
Refl. temp.	22 °C	the state	Geolocation					
Geolocation			Compass 0° N	N		Ladle with		
	D° N	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	Note				~~~	0.15
		Sp2 Sp3	Ladle 4 During casting	9		1650SI & WDS	39	245
Note Ladle No.4 after pu	uraina					LambdaFlex		
Edule No.4 and pt	arging					Lambaariex		
		Sp4						
					TNLZ1564 (Ladle 4 duri FLIR ONE Pro (c			
		HYBM1808 (Ladle 4 afte FLIR ONE Pro (

- The last thermographic images were taken in December, these showed the 1650SI board and 3mm microporous provided a ~40°C reduction in cold face temperature = 14% drop.
- The customer was very pleased with the result and the fact our thermal calculations were proven by the realworld trial.

